Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 470: 134076, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565014

ABSTRACT

Recently, the rampant administration of antibiotics and their synthetic organic constitutes have exacerbated adverse effects on ecosystems, affecting the health of animals, plants, and humans by promoting the emergence of extreme multidrug-resistant bacteria (XDR), antibiotic resistance bacterial variants (ARB), and genes (ARGs). The constraints, such as high costs, by-product formation, etc., associated with the physico-chemical treatment process limit their efficacy in achieving efficient wastewater remediation. Biodegradation is a cost-effective, energy-saving, sustainable alternative for removing emerging organic pollutants from environmental matrices. In view of the same, the current study aims to explore the biodegradation of ciprofloxacin using microbial consortia via metabolic pathways. The optimal parameters for biodegradation were assessed by employing machine learning tools, viz. Artificial Neural Network (ANN) and statistical optimization tool (Response Surface Methodology, RSM) using the Box-Behnken design (BBD). Under optimal culture conditions, the designed bacterial consortia degraded ciprofloxacin with 95.5% efficiency, aligning with model prediction results, i.e., 95.20% (RSM) and 94.53% (ANN), respectively. Thus, befitting amendments to the biodegradation process can augment efficiency and lead to a greener solution for antibiotic degradation from aqueous media.


Subject(s)
Anti-Bacterial Agents , Biodegradation, Environmental , Ciprofloxacin , Machine Learning , Neural Networks, Computer , Water Pollutants, Chemical , Ciprofloxacin/metabolism , Anti-Bacterial Agents/metabolism , Water Pollutants, Chemical/metabolism , Kinetics , Microbial Consortia , Bacteria/metabolism , Bacteria/genetics
2.
Sci Total Environ ; 921: 170718, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38331270

ABSTRACT

Pyrolysis-based waste-to-bioenergy development has the potential to resolve some of the major challenges facing rural communities in India such as poor electrification, household air pollution, and farmland degradation and contamination. Existing understanding and analysis of the economic feasibility and environmental impact of bioenergy deployment in rural areas is limited by parameter uncertainties, and relevant business model innovation following economic evaluation is even scarcer. This paper uses findings from a new field survey of 1200 rural households to estimate the economic feasibility and environmental impact of a pyrolysis-based bioenergy trigeneration development that was designed to tackle these challenges. Based on the survey results, probability distributions were constructed and used to supply input parameters for cost-benefit analysis and life cycle assessment. Monte Carlo simulation was applied to characterise the uncertainties of economic feasibility and environmental impact accounting. It was shown that the global warming potential of the development was 350 kg of CO2-eq per capita per annum. Also, the survey identified a significant mismatch between feedstock prices considered in the literature and prices asked for by the surveyed villagers. The results of the cost-benefit analysis and life cycle assessment were then applied to propose two novel business models inspired by the Business Model Canvas, which had the potential to achieve up to 90 % economic profitability and result in a benefit-cost ratio of 1.35-1.75. This is the first study achieving combined environmental and economic analysis and business model innovation for rural bioenergy production in developing countries.

3.
Environ Sci Pollut Res Int ; 31(16): 23535-23548, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421542

ABSTRACT

The persistence and transmission of emerging pollutants such as antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) have caused concern to scientific community. Composting practises are often adapted for the reduction of organic waste or to enhance fertility in agriculture soil but its continuous usage has posed a potential risk of increased abundance of ARGs in soil. Thus, the present study scrutinises the emerging risk of ARGs and MGEs in agriculture soil and its potential mitigation using biochar owing to its proven environmental sustainability and performance. After 30 days incubation, ARG distribution of SulI, SulII, dfrA1, dfrA12, tetA, flor, and ErmA was 50, 37.5, 37.5, 62.5, 42.11, 62.5, and 52.63% in control samples whereas it was 5, 15.78, 21.05, 15.79, 10.53, 21.05, and 31.58%, respectively, for biochar amended samples. Similarly, IntI1 and IntI2 in control and biochar amended samples were 18.75 and 6.25% and 10.53 and 5.26%, respectively. Principal component analysis (PCA) factor suggests that biochar amendment samples showed enhanced value for pH, organic matter, and organic carbon over control samples. Furthermore, Pearson's correlation analysis performed between detected ARGs and MGEs demonstrated the positive and significant correlation at p < 0.05 for both control and biochar amended samples.


Subject(s)
Charcoal , Composting , Soil , Anti-Bacterial Agents/analysis , Genes, Bacterial , Integrons , Agriculture , Soil Microbiology , Manure/analysis
4.
Sci Total Environ ; 891: 164344, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37244611

ABSTRACT

Many technical, climatic, environmental, biological, financial, educational, and regulatory factors are typically involved in solid waste management (SWM). Artificial Intelligence (AI) techniques have lately gained attraction in providing alternative computational methods for resolving problems of solid waste management. The purpose of this review is to direct solid waste management researchers taking an interest in the use of artificial intelligence in their area of study through main research elements such as AI models, their own benefits and drawbacks, effectiveness, and applications. The major AI technologies recognized are discussed in the subsections of the review, which contains a specific fusion of AI models. It also covers research that equated AI technologies to other non-AI methodologies. The section that follows contains a brief debate of the numerous SWM disciplines where AI was consciously applied. The article concludes with progress, challenges and perspectives in implementing AI-based solid waste management.

5.
Bioresour Technol ; 376: 128903, 2023 May.
Article in English | MEDLINE | ID: mdl-36931447

ABSTRACT

Environmental contamination is considered a major issue with the growing urbanization and industrialization. In this context, the scientific society is engaged in searching for a sustainable, safe, and eco-friendly solution. Sustainable materials such as biochar play an important role in environmental contamination. It has some specific properties such as micropores which increase the surface area to bind the pollutants. This review endeavors to analyze the potential of fruit wastes especially tropical fruit tree residues as potential candidates for producing highly efficient biochar materials. The review discusses various aspects of biochar production viz. pyrolysis, torrefaction, hydrothermal carbonization, and gasification. In addition, it discusses biochar use as an adsorbent, wastewater treatment, catalyst, energy storage, carbon sequestration and animal feed. The review put forward a critical discussion about key aspects of applying biochar to the environment.


Subject(s)
Fruit , Trees , Animals , Charcoal/chemistry , Soil/chemistry
6.
Chemosphere ; 311(Pt 1): 136880, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36257401

ABSTRACT

Groundwater which is an essential source of freshwater for various domestic, agricultural, industrial applications is facing a severe deterioration in quality due to demographic pressure and intense industrial activities. Present study appraises the influence of human induced activities on groundwater quality of Agra-Firozabad industrial belts of Western Uttar Pradesh, Yamuna basin, India. The maximum concentrations of metals and anions found during pre and post monsoon are as follows: Lead 0.302; 0.086, calcium 672; 1260, magnesium 215; 16.8, cadmium 0.0; 0.066, chromium 0.016; 0.005, manganese 0.340; 0.076, nickel 0.044; 0.028, sulfate 514; 286, nitrate 66.7; 3.56 and fluoride 1.17; 2.02 mg/L respectively. Based on results of Water Quality Index, groundwater samples were classified under 'Poor water' category in 34.2% and 52.63% during pre and post-monsoon period, respectively. Accordingly, higher concentrations of bicarbonate and sulfate might have attributed to excess hardness, instrumental in making it unsuitable for industrial usage. However, values of Percent Sodium, Sodium Adsorption Ratio, Magnesium Hazard and Permeability Index signified that groundwater from majority of locations was fit for agricultural use. Health risk assessment studies revealed that children consuming polluted water were affected more as compared to adults. Timely action and strict compliance of regulation is recommended towards groundwater management for defined usage to avert severe health effects and to meet sustainable development goals.


Subject(s)
Groundwater , Water Pollutants, Chemical , Humans , Child , Adult , Rivers , Magnesium/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Quality , Sulfates/analysis , Risk Assessment , Sodium , India
7.
Int J Food Microbiol ; 381: 109890, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36095867

ABSTRACT

Blueberry (Vaccinium spp.) is one of the five major healthy foods for humans and is recognized as the "king of the world fruit", which has attracted great interest in the phytogenic prebiotics market. Blueberry fruit is favored for its delicious taste and its various functional ingredients (organic acids, phenolics, minerals and vitamins) with multitherapeutic value (antioxidant, anti-inflammatory, anticancer, neuroprotective and vision improvement properties). However, fresh blueberries are highly perishable since they are vulnerable to mechanical damage and microbial decay, resulting in a short shelf life and inevitable subsequent economic losses. Due to the strong seasonal availability and limited storage period of blueberries, their derived bioactive products have emerged as functional foods. Novel food developments that are currently available include blueberry fruit juice, wine, vinegar, jam, dried fruit, pulp powder, colorant and flavoring additives used in cake, biscuit, bread, yogurt, and jelly. This review systematically describes the current status of blueberry fruit as bioactive ingredients and valuable food products with greater nutraceutical health potential of blueberries.


Subject(s)
Blueberry Plants , Acetic Acid , Antioxidants , Fruit , Humans , Powders , Vitamins
8.
Chemosphere ; 307(Pt 4): 136124, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995194

ABSTRACT

The rapid growth of the industrial sector has expedited the accumulation of heavy metal(loid)s in the environment at hazardous levels. The elements such as arsenic, lead, mercury, cadmium and chromium are lethal in terms of toxicity with severe health impacts. With issues like water scarcity, limitations in wastewater treatment, and costs pertaining to detection in environmental matrices; their rapid and selective detection for reuse of effluents is of the utmost priority. Biosensors are the futuristic tool for the accurate qualitative and quantitative analysis of a specific analyte and integrate biotechnology, microelectronics and nanotechnology to fabricate a miniaturized device without compromising the sensitivity, specificity and accuracy. The characteristic features of supporting matrix largely affect the biosensing ability of the device and incorporation of highly sensitive and durable metal organic frameworks (MOFs) are reported to enhance the efficiency of advanced biosensors. Electrochemical biosensors are among the most widely developed biosensors for the detection of heavy metal(loids), while direct electron transfer approach from the recognition element to the electrode has been found to decrease the chances of interference. This review provides an insight into the recent progress in biosensor technologies for the detection of prevalent heavy metal(loid)s; using advanced support systems such as functional metal-based nanomaterials, carbon nanotubes, quantum dots, screen printed electrodes, glass beads etc. The review also delves critically in comparison of various techno-economic studies and the latest advances in biosensor technology.


Subject(s)
Arsenic , Biosensing Techniques , Mercury , Metal-Organic Frameworks , Metals, Heavy , Nanotubes, Carbon , Cadmium , Chromium , Metals, Heavy/analysis , Water
9.
Bioresour Technol ; 361: 127605, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35835423

ABSTRACT

The enormous use of synthetic antibiotic and personal care products has impacted the natural microbiome and ecosystem. Overtime, treatment technologies developed suffered due to incomplete removal hence, a pilot dual-chambered microbial peroxide-producing cell that degrades ampicillin catalyzed by homogenous Fenton-reaction was designed. The system reported maximum current at 16.714 ± 0.048 µAcm-2, power output of 1.956 ± 0.015 mW m-2; 88 ± 2.90 mM of H2O2 generation with Na2SO4 that degraded 95.9 ± 3.00 to 97.8 ± 3.20% of 10 mg L-1ampicillin within 72 hrs with electro-active Shewanella putrefaciens. An E. coli bioactivity assay with ampicillin exhibited no sensitivity zone due to the loss of activity. Analytical spectroscopic studies reveal ß-Lactam ring deformation; Liquid Chromatography-Mass Spectroscopy clearly shows the presence of degradation metabolites. A sustainable wastewater treatment with 72 ± 4.5% reduction in anodic chemical oxygen demand was achieved. Present results designate the technology, as promising for effective antibiotics removal for wastewater treatment concomitant with electricity generation.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Ampicillin , Anti-Bacterial Agents/pharmacology , Ecosystem , Electrodes , Escherichia coli/metabolism , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Peroxides , Wastewater , beta-Lactams
10.
Chemosphere ; 300: 134586, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35427655

ABSTRACT

Distillery wastewater has high biological and chemical oxygen demand and requires additional treatment before it can be safely discharged into receiving water. It is usually processed through a biomethanation digester and the end product is the post-methanated distillery effluent (PMDE). Research have shown that PMDE released by molasses-based distilleries is a hazardous effluent that can cause harm to the biota and the environment; it contains elevated amount of total dissolved solids (TDS), total suspended solids (TSS) and excess levels of persistent organic compounds (POPs), heavy metals, phenolic compounds, and salts. The practice of wastewater reuse for irrigation in many water scarce countries necessitates the proper treatment of PMDE before it is discharged into receiving water. Convention methods have been in practice for decades, but innovative technologies are needed to enhance the efficiency of PMDE treatment. Advance physical treatment such as membrane separation technology using graphene, ion-exchange and ultrafiltration membranes; chemical treatment such as advanced oxidation methods, electrocoagulation and photocatalytic technologies; biological treatment such as microbial and enzymatic treatment; and hybrid treatment such as microbial-fuel cell (MFC), genetically modified organisms (GMO) and constructed wetland technologies, are promising new methods to improve the quality of PMDE. This review provides insight into current accomplishments evaluates their suitability and discusses future developments in the detoxification of PMDE. The consolidated knowledge will help to develop a better management for the safe disposal and the reuse of PMDE wastewater.


Subject(s)
Environmental Pollutants , Industrial Waste , Biological Oxygen Demand Analysis , Waste Disposal, Fluid/methods , Wastewater , Water
11.
Environ Res ; 209: 112844, 2022 06.
Article in English | MEDLINE | ID: mdl-35101398

ABSTRACT

Potentially toxic elements (PTEs) such as toxic metal (loid)s and other emerging hazardous contaminants, exist in the environment and poses a serious threat. A large amount of wastewater containing PTEs such as cadmium, chromium, copper, nickel, arsenic, lead, zinc, etc. Release from industries during production process. Besides these, chemical-based fertilizers used in soils during crop production have become one of the crucial sources of PTEs. Various techniques are being employed for the mitigation of PTEs like chemical precipitation, ion exchange, coagulation, activated carbon, adsorption, membrane filtration, and bioremediation. Among these mitigation strategies, biological processes such as bioremediation, phytoremediation etc. Are extensively used, as they are economic have high-efficiency rate and are eco-friendly. This review intends to provide information on PTEs contamination through various sources; along with the toxicity of metal (loid)s with respect to their patterns of transmission and risks in the changing environment. Various remediation methods for the management of these pollutants along with their techno-economic perspective are also summarized in this review.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Cadmium/toxicity , Environmental Pollutants/toxicity , Environmental Pollution/adverse effects , Metals/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity , Wastewater/toxicity
12.
Chemosphere ; 293: 133474, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34979200

ABSTRACT

The increasing agro-demands with the burgeoning population lead to the accumulation of lignocellulosic residues. The practice of burning agri-residues has consequences viz. Release of soot and smoke, nutrient depletion, loss of soil microbial diversity, air pollution and hazardous effects on human health. The utilization of agricultural waste as biomass to synthesize biochar and biofuels, is the pertinent approach for attaining sustainable development goals. Biochar contributes in the improvement of soil properties, carbon sequestration, reducing greenhouse gases (GHG) emission, removal of organic and heavy metal pollutants, production of biofuels, synthesis of useful chemicals and building cementitious materials. The biochar characteristics including surface area, porosity and functional groups vary with the type of biomass consumed in pyrolysis and the control of parameters during the process. The major adsorption mechanisms of biochar involve physical-adsorption, ion-exchange interactions, electrostatic attraction, surface complexation and precipitation. The recent trend of engineered biochar can enhance its surface properties, pH buffering capacity and presence of desired functional groups. This review focuses on the contribution of biochar in attaining sustainable development goals. Hence, it provides a thorough understanding of biochar's importance in enhancing soil productivity, bioremediation of environmental pollutants, carbon negative concretes, mitigation of climate change and generation of bioenergy that amplifies circular bioeconomy, and concomitantly facilitates the fulfilment of the United Nation Sustainable Development Goals. The application of biochar as seen is primarily targeting four important SDGs including clean water and sanitation (SGD6), affordable and clean energy (SDG7), responsible consumption and production (SDG12) and climate action (SDG13).


Subject(s)
Environmental Restoration and Remediation , Soil , Charcoal/chemistry , Climate Change , Humans , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...